• A binary star as a cosmic particle accel

    From ScienceDaily@1337:3/111 to All on Wed Jul 1 21:36:32 2020
    A binary star as a cosmic particle accelerator
    Evidence of very high-energy gamma radiation from Eta Carinae

    Date:
    July 1, 2020
    Source:
    Deutsches Elektronen-Synchrotron DESY
    Summary:
    Scientists have identified the binary star Eta Carinae as a new kind
    of source for very high-energy (VHE) cosmic gamma-radiation. Eta
    Carinae is located 7500 lightyears away in the constellation
    Carina in the Southern Sky and, based on the data collected,
    emits gamma rays with energies up to 400 gigaelectronvolts (GeV),
    some 100 billion times more than the energy of visible light.



    FULL STORY ========================================================================== Scientists have identified the binary star Eta Carinae as a new kind of
    source for very high-energy (VHE) cosmic gamma-radiation. Eta Carinae is located 7500 lightyears away in the constellation Carina in the Southern
    Sky and, based on the data collected, emits gamma rays with energies
    up to 400 gigaelectronvolts (GeV), some 100 billion times more than the
    energy of visible light.


    ==========================================================================
    With a specialised telescope in Namibia a DESY-led team of researchers
    has proven a certain type of binary star as a new kind of source for
    very high- energy cosmic gamma-radiation. Eta Carinae is located 7500 lightyears away in the constellation Carina (the ship's keel) in the
    Southern Sky and, based on the data collected, emits gamma rays with
    energies all the way up to 400 gigaelectronvolts (GeV), some 100 billion
    times more than the energy of visible light. The team headed by DESY's
    Stefan Ohm, Eva Leser and Matthias Fu"ssling is presenting its findings,
    made at the gamma-ray observatory High Energy Stereoscopic System
    (H.E.S.S.), in the journal Astronomy & Astrophysics. An accompanying
    multimedia animation explains the phenomenon. "With such visualisations
    we want to make the fascination of research tangible," emphasises DESY's Director of Astroparticle Physics, Christian Stegmann.

    Eta Carinae is a binary system of superlatives, consisting of two blue
    giants, one about 100 times, the other about 30 times the mass of our
    sun. The two stars orbit each other every 5.5 years in very eccentric elliptical orbits, their separation varying approximately between
    the distance from our Sun to Mars and from the Sun to Uranus. Both
    these gigantic stars fling dense, supersonic stellar winds of charged
    particles out into space. In the process, the larger of the two loses a
    mass equivalent to our entire Sun in just 5000 years or so. The smaller
    one produces a fast stellar wind travelling at speeds around eleven
    million kilometres per hour (about one percent of the speed of light).

    A huge shock front is formed in the region where these two stellar
    winds collide, heating up the material in the wind to extremely high temperatures. At around 50 million degrees Celsius, this matter radiates brightly in the X-ray range. The particles in the stellar wind are not
    hot enough to emit gamma radiation, though. "However, shock regions
    like this are typically sites where subatomic particles are accelerated
    by strong prevailing electromagnetic fields," explains Ohm, who is the
    head of the H.E.S.S. group at DESY. When particles are accelerated this rapidly, they can also emit gamma radiation. In fact, the satellites
    "Fermi," operated by the US space agency NASA, and AGILE, belonging to
    the Italian space agency ASI, already detected energetic gamma rays of
    up to about 10 GeV coming from Eta Carinae in 2009.

    "Different models have been proposed to explain how this gamma radiation
    is produced," Fu"ssling reports. "It could be generated by accelerated electrons or by high-energy atomic nuclei." Determining which of these
    two scenarios is correct is crucial: very energetic atomic nuclei account
    for the bulk of the so-called Cosmic Rays, a subatomic cosmic hailstorm striking Earth constantly from all directions. Despite intense research
    for more than 100 years, the sources of the Cosmic Rays are still not exhaustively known. Since the electrically charged atomic nuclei are
    deflected by cosmic magnetic fields as they travel through the universe,
    the direction from which they arrive at Earth no longer points back to
    their origin. Cosmic gamma rays, on the other hand, are not deflected. So,
    if the gamma rays emitted by a specific source can be shown to originate
    from high-energy atomic nuclei, one of the long-sought accelerators of
    cosmic particle radiation will have been identified.

    "In the case of Eta Carinae, electrons have a particularly hard time
    getting accelerated to high energyies, because they are constantly being deflected by magnetic fields during their acceleration, which makes
    them lose energy again," says Leser. "Very high-energy gamma radiation
    begins above the 100 GeV range, which is rather difficult to explain
    in Eta Carinae to stem from electron acceleration." The satellite data
    already indicated that Eta Carinae also emits gamma radiation beyond
    100 GeV, and H.E.S.S. has now succeeded in detecting such radiation up
    to energies of 400 GeV around the time of the close encounter of the
    two blue giants in 2014 and 2015. This makes the binary star the first
    known example of a source in which very high-energy gamma radiation is generated by colliding stellar winds.

    "The analysis of the gamma radiation measurements taken by H.E.S.S. and
    the satellites shows that the radiation can best be interpreted as
    the product of rapidly accelerated atomic nuclei," says DESY's PhD
    student Ruslan Konno, who has published a companion study, together
    with scientists from the Max Planck Institute for Nuclear Physics in Heidelberg. "This would make the shock regions of colliding stellar
    winds a new type of natural particle accelerator for cosmic rays." With H.E.S.S., which is named after the discoverer of Cosmic Rays, Victor
    Franz Hess, and the upcoming Cherenkov Telescope Array (CTA), the next-generation gamma-ray observatory currently being built in the
    Chilean highlands, the scientists hope to investigate this phenomenon
    in greater detail and discover more sources of this kind.

    "I find science and scientific research extremely important," says
    Nicolai, who sees close parallels in the creative work of artists and scientists. For him, the appeal of this work also lay in the artistic
    mediation of scientific research results: "particularly the fact that
    it is not a film soundtrack, but has a genuine reference to reality," emphasizes the musician and artist.

    Together with the exclusively composed sound, this unique collaboration of scientists, animation artists and musician has resulted in a multimedia
    work that takes viewers on an extraordinary journey to a superlative
    double star some 7500 light years away.


    ========================================================================== Story Source: Materials provided by
    Deutsches_Elektronen-Synchrotron_DESY. Note: Content may be edited for
    style and length.


    ========================================================================== Journal References:
    1. H. Abdalla et al. Detection of very-high-energy g-ray emission
    from the
    colliding wind binary e Car with H.E.S.S.. Astronomy & Astrophysics,
    2020; 635: A167 DOI: 10.1051/0004-6361/201936761
    2. R. White, M. Breuhaus, R. Konno, S. Ohm, B. Reville,
    J.A. Hinton. Gamma-
    ray and X-ray constraints on non-thermal processes in e Carinae.

    Astronomy & Astrophysics, 2020; 635: A144 DOI: 10.1051/0004-6361/
    201937031 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2020/07/200701100106.htm

    --- up 23 weeks, 1 day, 2 hours, 40 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)