• Tiny mineral particles are better vehicl

    From ScienceDaily@1337:3/111 to All on Thu Jul 2 21:35:30 2020
    Tiny mineral particles are better vehicles for promising gene therapy


    Date:
    July 2, 2020
    Source:
    University of Wisconsin-Madison
    Summary:
    Researchers have developed a safer and more efficient way to
    deliver a promising new method for treating cancer and liver
    disorders and for vaccination.



    FULL STORY ========================================================================== University of Wisconsin-Madison researchers have developed a safer and
    more efficient way to deliver a promising new method for treating cancer
    and liver disorders and for vaccination.


    ==========================================================================
    The technology relies on inserting into cells pieces of carefully
    designed messenger RNA (mRNA), a strip of genetic material that human
    cells typically transcribe from a person's DNA in order to make useful
    proteins and go about their business. Problems delivering mRNA safely
    and intact without running afoul of the immune system have held back
    mRNA-based therapy, but UW-Madison researchers are making tiny balls of minerals that appear to do the trick in mice.

    "These microparticles have pores on their surface that are on the
    nanometer scale that allow them to pick up and carry molecules like
    proteins or messenger RNA," says William Murphy, a UW-Madison professor
    of biomedical engineering and orthopedics. "They mimic something commonly
    seen in archaeology, when we find intact protein or DNA on a bone sample
    or an eggshell from thousands of years ago. The mineral components helped
    to stabilize those molecules for all that time." Murphy and UW-Madison collaborators used the mineral-coated microparticles (MCMs) -- which
    are 5 to 10 micrometers in diameter, about the size of a human cell --
    in a series of experiments to deliver mRNA to cells surrounding wounds
    in diabetic mice. Wounds healed faster in MCM-treated mice, and cells
    in related experiments showed much more efficient pickup of the mRNA
    molecules than other delivery methods.

    The researchers described their findings today in the journal Science
    Advances.

    In a healthy cell, DNA is transcribed into mRNA, and mRNA serves as the instructions the cell's machinery uses to make proteins. A strip of mRNA created in a lab can be substituted into the process to tell a cell to
    make something new. If that something is a certain kind of antigen, a
    molecule that alerts the immune system to the presence of a potentially
    harmful virus, the mRNA has done the job of a vaccine.



    ==========================================================================
    The UW-Madison researchers coded mRNA with instructions directing cell ribosomes to pump out a growth factor, a protein that prompts healing
    processes that are otherwise slow to unfold or nonexistent in the diabetic
    mice (and many severely diabetic people).

    mRNA is short-lived in the body, though, so to deliver enough to cells typically means administering large and frequent doses in which the
    mRNA strands are carried by containers made of molecules called cationic polymers.

    "Oftentimes the cationic component is toxic. The more mRNA you deliver,
    the more therapeutic effect you get, but the more likely it is that
    you're going to see toxic effect, too. So, it's a trade-off," Murphy
    says. What we found is when we deliver from the MCMs, we don't see that toxicity. And because MCM delivery protects the mRNA from degrading, you
    can get more mRNA where you want it while mitigating the toxic effects."
    The new study also paired mRNA with an immune-system-inhibiting protein,
    to make sure the target cells didn't pick the mRNA out as a foreign
    object and destroy or eject it.

    Successful mRNA delivery usually keeps a cell working on new instructions
    for about 24 hours, and the molecules they produce disperse throughout
    the body.

    That's enough for vaccines and the antigens they produce. To keep lengthy processes like growing replacement tissue to heal skin or organs, the
    proteins or growth factors produced by the cells need to hang around
    for much longer.



    ========================================================================== "What we've seen with the MCMs is, once the cells take up the mRNA and
    start making protein, that protein will bind right back within the
    MCM particle," Murphy says. "Then it gets released over the course
    of weeks. We're basically taking something that would normally last
    maybe hours or even a day, and we're making it last for a long time."
    And because the MCMs are large enough that they don't enter the
    bloodstream and float away, they stay right where they are needed to
    keep releasing helpful therapy. In the mice, that therapeutic activity
    kept going for more than 20 days.

    "They are made of minerals similar to tooth enamel and bone, but designed
    to be reabsorbed by the body when they're not useful anymore," says
    Murphy, whose work is supported by the Environmental Protection Agency,
    the National Institutes of Health and the National Science Foundation
    and a donation from UW-Madison alums Michael and Mary Sue Shannon.

    "We can control their lifespan by adjusting the way they're made,
    so they dissolve harmlessly when we want." The technology behind
    the microparticles was patented with the help of the Wisconsin Alumni
    Research Foundation and is licensed to Dianomi Therapeutics, a company
    Murphy co-founded.

    The researchers are now working on growing bone and cartilage and
    repairing spinal cord injuries with mRNA delivered by MCMs.

    This research was supported by grants from the Environmental Protection
    Agency (S3.TAR grant 83573701), the National Institutes of Health
    (R01AR059916, R21EB019558, NIH 5 T32 GM008349) and the National Science Foundation (DMR 1105591, DGE-1256259).


    ========================================================================== Story Source: Materials provided
    by University_of_Wisconsin-Madison. Original written by Chris
    Barncard. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Andrew S. Khalil, Xiaohua Yu, Jennifer M. Umhoefer, Connie S.

    Chamberlain, Linzie A. Wildenauer, Gaoussou M. Diarra, Timothy
    A. Hacker, William L. Murphy. Single-dose mRNA therapy
    via biomaterial-mediated sequestration of overexpressed
    proteins. Science Advances, 2020; 6 (27): eaba2422 DOI:
    10.1126/sciadv.aba2422 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2020/07/200702144052.htm

    --- up 23 weeks, 2 days, 2 hours, 39 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)