A new treatment for glaucoma?
Injection prevented severe pediatric form of disease in mice, could be
used to treat adult glaucoma
Date:
October 18, 2021
Source:
Northwestern University
Summary:
A new study in mice has identified new treatment targets for
glaucoma, including preventing a severe pediatric form of glaucoma,
as well as uncovering a possible new class of therapy for the most
common form of glaucoma in adults.
FULL STORY ==========================================================================
A Northwestern Medicine study in mice has identified new treatment targets
for glaucoma, including preventing a severe pediatric form of glaucoma,
as well as uncovering a possible new class of therapy for the most common
form of glaucoma in adults.
==========================================================================
In people with high pressure glaucoma, fluid in the eye doesn't properly
drain and builds up pressure on the optic nerve, leading to vision
loss. It affects 60 million people worldwide and is the most common
cause of blindness in people over 60 years old.
While there are a few treatments available for open angle glaucoma,
the most common form of glaucoma in adults (eye drops, oral medication,
laser treatments), there are no cures, and a severe form of glaucoma in children between birth and three years old known as primary congenital
glaucoma can only be treated with surgery.
"Although primary congenital glaucoma is much rarer than open angle
glaucoma, it is devastating for children," said corresponding author
Dr. Susan Quaggin, chief of nephrology and hypertension in the Department
of Medicine at Northwestern University Feinberg School of Medicine. "New treatments and new classes of treatments are urgently needed to slow
vision loss in both forms.
Using gene editing, the scientists in the study developed new models of glaucoma in mice that resembled primary congenital glaucoma. By injecting
a new, long-lasting and non-toxic protein treatment (Hepta-ANGPT1)
into mice, the scientists were able to replace the function of genes
that, when mutated, cause glaucoma. With this injectable treatment,
the scientists also successfully prevented glaucoma from ever forming
in one model. This same therapy, when injected into the eyes of healthy
adult mice, reduced pressure in the eyes, supporting it as a possible
new class of therapy for the most common cause of glaucoma in adults
(high intraocular pressure open angle glaucoma).
The study, "Cellular crosstalk regulates the aqueous humor outflow pathway
and provides new targets for glaucoma therapies,"was published today,
Oct. 18, in the journal Nature Communications.
The next step is to develop the appropriate delivery system for the
successful new protein treatment in patients and bring it to production, Quaggin said.
Additionally, the scientists used bioinformatics and single cell RNA
sequence data to understand and identify glaucoma pathways that can be
explored in the future for additional therapeutic targets for the disease,
such as ones that regulate communication with a specialized blood vessel
in the eye (Schlemm's canal) that is important for draining fluid and maintaining normal eye pressure.
"Having a treatment that can promote remodeling and/or growth of
a defective Schlemm's canal to treat glaucoma would be fantastic,"
Quaggin said. "These studies are the first step to that goal.
"Our hope is that this study leads to the first targeted therapy that effectively promotes (aqueous humor) fluid outflow from the front of an
eye, reversing the underlying biologic defect in patients with glaucoma."
Other Northwestern co-authors are Ben Thompson (first), Dr. Jing Jin,
Pan Liu and medical student Raj Purohit. This study builds on major
teamwork and an ongoing collaboration with University of Madison-Wisconsin co-authors Terri Young and Stuart Thomson.
========================================================================== Story Source: Materials provided by Northwestern_University. Original
written by Kristin Samuelson. Note: Content may be edited for style
and length.
========================================================================== Journal Reference:
1. Benjamin R. Thomson, Pan Liu, Tuncer Onay, Jing Du, Stuart
W. Tompson,
Sol Misener, Raj R. Purohit, Terri L. Young, Jing Jin, & Susan E.
Quaggin. Cellular crosstalk regulates the aqueous humor outflow
pathway and provides new targets for glaucoma therapies. Nature
Communications, 2021 DOI: 10.1038/s41467-021-26346-0 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2021/10/211018141750.htm
--- up 6 weeks, 4 days, 8 hours, 25 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)